TDF PROPHYLAXIS FOR PMTCT OF HBV: EFFECT ON INFANT AND INFANT BONE MINERAL DENSITY

Poster Session Presentation: BONE DISEASE - P-N1 on Monday, March 5, 2018, 2:30 PM-3:30 PM Themed Discussion: BONES OF CONTEND (TDF)-1 on Tuesday, March 6, 2018, 1:30 PM-2:30 PM

Nicolás Salvadori1, Bo Fan2, Waralee Teeyasootrunoenthan3, Nicole Ngo-Giang-Huong1,2,3, Siriluk Phanomcheungs4, Anita Luvira6, Achara Puangsumbots5, Arunrat Suwannarat5, Ussamee Siripromthong3, Chatiwat Putiyamnen3, Athena Kourtis3, Marc Bultny3, George Siberry2, Gonzague Jourdain1,2, and IATP Study Group

1. Institut de recherche pour le développement (IRD) PPH, Maroua, France; 2. Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; 3. Department of Radiology & Biomedical Imaging, University of California San Francisco, CA, 4. Department of Radiology, Mahara Nakorn Chiang Mai Hospital, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; 5. Faculty of Health Sciences, Naresuan University, Phitsanulok, Thailand; 6. Centers for Disease Control and Prevention, Atlanta, GA, 7. Global Hepatitis Programmes, WHO Geneva, Switzerland; 8. Srinakharinwirot University National Institute of Child Health and Human Development (NICHD), NIH, Washington DC

Background

- Tenofovir disoproxil fumarate (TDF) is used during pregnancy
- TDF is increasingly used for hepatitis B virus (HBV) monoinfected pregnant women with high HBV DNA levels to prevent mother-to-child transmission (PMTCT) of HBV
- In HBV infected women, TDF may adversely affect maternal and infant bone mineral density (BMD)

Objective

- Assess one year after delivery/birth the effect of a maternal short course of TDF 28 weeks' pregnancy to 2 months postpartum in hepatitis B chronically infected women on:
 - Maternal total hip and lumbar spine bone mineral density
 - Infant's infant lumbar spine bone mineral density

This is a sub-study of the IATP study, a randomized double-blind, controlled trial of TDF for PMTCT of HBV where HBV chronically infected mothers were randomized to receive TDF or a matching placebo from 28 weeks gestational age (GA) to 2 months postpartum (NCT01745822) in Thailand. At enrolment, women had: HBeAg+, ALT ≥60 U/L, creatinine clearance ≥ 50 ml/min. Breastfeeding was encouraged.

Design of Parent Study (NCT01745822)

- Infants
 - 818 HBsAg- women randomized
 - Follow-up from pregnancy to 24 months postpartum
 - 28 weeks of gestation
- Postpartum
 - 16 weeks postpartum (22 weeks of lactation)
 - 24 months postpartum (60 weeks of lactation)

From left to right: DXA scans of infant lumbar spine, maternal lumbar spine and maternal hip

Statistical considerations

- Sample size calculation: at least 45 mother-infant pairs per arm for ≥80% power to detect a 13.3% mean reduction in infant lumbar spine BMD in the TDF arm compared to the placebo (using two-sided Student’s t-test at the significance level of 0.05).
- Comparisons of baseline characteristics: Wilcoxon-Mann-Whitney test for continuous variables and Fisher’s exact test for categorical variables

Results

Measurement of Bone Mineral Density (BMD)

- Maternal hip and lumbar spine BMD and infant lumbar spine BMD using dual-energy X-ray absorptiometry (DXA) at three participating institutions.
- Phantoms were circulated for cross calibration.
- All investigators and operators were blinded to the randomized study treatment.
- All DXA scans were centrally reviewed by two experts (BF, WT) for accuracy.

Table 1: Infant characteristics by treatment arm.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>TDF</th>
<th>Placebo</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal age</td>
<td>29 (14, 53)</td>
<td>29 (13, 48)</td>
<td>0.65</td>
</tr>
<tr>
<td>Maternal BMI</td>
<td>23.0 (19.4, 26.3)</td>
<td>23.9 (20.7, 26.7)</td>
<td>0.42</td>
</tr>
<tr>
<td>Infant age</td>
<td>25.8 (23.9, 27.0)</td>
<td>25.8 (24.0, 27.1)</td>
<td>0.98</td>
</tr>
<tr>
<td>Infant weight</td>
<td>5.8 (0.8, 12.0)</td>
<td>6.2 (4.3, 12.0)</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Table 2: Infant BMD characteristics by maternal treatment arm.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>TDF</th>
<th>Placebo</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant age</td>
<td>29.0 (26.8, 30.1)</td>
<td>29.1 (26.8, 30.1)</td>
<td>0.78</td>
</tr>
<tr>
<td>Infant weight</td>
<td>5.9 (3.0, 12.7)</td>
<td>6.1 (4.0, 12.0)</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Table 3: Bone Mineral Density Measurements by treatment arm

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>TDF</th>
<th>Placebo</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal age</td>
<td>29 (14, 53)</td>
<td>29 (13, 48)</td>
<td>0.65</td>
</tr>
<tr>
<td>Maternal BMI</td>
<td>23.0 (19.4, 26.3)</td>
<td>23.9 (20.7, 26.7)</td>
<td>0.42</td>
</tr>
<tr>
<td>Infant age</td>
<td>25.8 (23.9, 27.0)</td>
<td>25.8 (24.0, 27.1)</td>
<td>0.98</td>
</tr>
<tr>
<td>Infant weight</td>
<td>5.8 (0.8, 12.0)</td>
<td>6.2 (4.3, 12.0)</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Figure: Participant disposition

Items for Discussion

- Mothers were HBV infected, HIV uninfected. They received only TDF and no other antiretrovirals in contrast to most previous TDF studies, which were conducted in the setting of HIV infection.
- Comparisons of BMD in mothers and infants exposed versus unexposed to TDF benefited from the randomization, though not all women and infants participated in this sub-study.
- Follow-up assessments were made blindly to treatment assignment.

Conclusions

- We did not find evidence for a persistent effect of short-course TDF on BMD in mothers or infants after TDF discontinuation.
- Temporary reductions in BMD may have occurred during TDF therapy.
- Nevertheless, we can exclude a persistent TDF-mediated reduction in BMD as small as 3% in mothers and 6% in infants.