BRAIN PET IMAGING OF MICROGLIA IN MACAQUES WITH SIV ENCEPHALITIS

Dima A. Hammoud1, Sanhita Sinharay1, Kota Matsuda2, Dianne Lee1, Swati Shah1, William C. Reid1, Paul Wakim1, Vanessa Hirsch3, Avindra Nath4, Michele Di Mascio2

1. Center for Infectious Disease Imaging, Clinical Center 2, National Institute of Allergy and Infectious Diseases, 3. National Institute of Neurological Disorders and Stroke, NIH, USA.

Introduction

The exact cause of neurocognitive decline despite peripheral control of HIV infection remains incompletely understood. One of the hypothesized causes is a constant neuroinflammatory burden resulting in a vicious cycle of microglial activation and release of proinflammatory chemokines/cytokines, eventually resulting in neuronal loss/dysfunction1. The exact role of neuroinflammation in the earliest stages of the infection when cerebrospinal fluid (CSF) Viral loads (VL) can be very high, is however unclear. Neuroinflammation can be quantified using PET imaging with ligands targeting the translocator protein (TSPO), an outer mitochondrial membrane receptor known to be upregulated under inflammatory conditions2.

Project Overview

In this study we wanted to image brain TSPO expression using [18F]-DPA714 PET3, in macaques infected with a neurovirulent SIV strain (SIVsm804E). Our goal was to quantify neuroinflammatory changes before and after inoculation and correlate to HIV biomarkers in the periphery and in the CNS.

Methods

Dynamic PET imaging with [18F]-DPA714 for TSPO by displacement with cold PK11195 (TSPO antagonist) was performed in 5 SIV-infected macaques at baseline as well as different time points following inoculation, until euthanasia.

Regional and whole brain volumes of interest were drawn on the respective monkey MR images. SUVmean at equilibrium which reflects total uptake (specific + non-specific uptake) and Binding Potential (BP) values ([Total binding/non specific binding] - 1) were calculated. We achieved appropriate displacement in four out of five animals. To assess whether clinically relevant biomarkers (CSF and plasma VL, CD4 cell counts as well as CSF levels of MCP-1, IL-1ra, IL-2, IL-8, IL-10, IL-15 and IL-18) are predictive of SIVmean (total) and BP, each measurement was first included individually in a statistical model as an explanatory variable, with the total SUVmean or BP as the response variable. The measurements were then included together in one model to evaluate their combined relationship with SUVmean (total) or BPn. Because of the repeated-measures nature of the data, a mixed model was fit to the data. Multiplex post-mortem immunofluorescent (IF) staining for microglia/macrophages (Iba1), neurons (NeuN) and apoptosis (cleaved caspase-3/PARP) was performed in all animals and compared to 3 normal monkey brains.

Results

When the last time point (prior to euthanasia) was compared to pre-inoculation baseline, [18F]-DPA714 total binding was decreased in 4 animals (Fig. 1A) and increased in one animal (Fig. 1C). We found an inverse relationship between binding and CSF VL: binding decreased when VL increased and vice versa (Fig. 1B and D).

Mixed effect model fitting of the variables showed significant negative correlation between SUVmean (total) (n=5) and CSF viral load (p=0.024) and a trend positive correlation with CSF MCP-1 levels (p=0.067). BP (n=4) showed borderline significant correlation with CSF VL (p=0.064).

Pathology results in 4 of the animals compared to 3 uninfected monkey brains showed unchanged or mildly decreased Iba1 staining in the background compared to controls with increased diffuse CC3/PARP staining (apoptosis) (Fig.2, 2nd row). One animal (SIV#5) that showed upregulated TSPO on PET had increased Iba1 staining with amoeboid shaped microglial cell bodies and truncated processes suggestive of microglial activation (Fig.2, 3rd row).

Conclusions

We found a negative correlation between total [18F]-DPA714 binding on PET and CSF VL in macaques with severe SIV encephalitis. Imaging findings were further confirmed by IF staining.

Our results suggest that at very high CSF VL, microglial loss/dysfunction occurs rather than microglial activation. Marked neuronal apoptosis is also seen in this setting. On the other hand, microglial activation is seen when CSF VL decreases. Our findings provide a new insight into the role/status of microglia/macrophages in early stages of the disease when very high CSF viral loads are observed (Feibig stages II-IV)2.

References

1. Spudich, SS et al. Central nervous system immune activation characterizes primary human immunodeficiency virus 1 infection even in participants with minimal cerebrospinal fluid viral burden. JID, 2011