Dosing for Two: Placental Transfer of Darunavir and Fetal Exposure

Stein SCHALKWIJK1, Aaron O. BUaben1, Angela P. Colbers1, David M. Burger1, Rick Greupink2, Frans G.M. Russe1

1Department of Pharmacy, Radboud Institute for Health Sciences, Radboud university medical center, The Netherlands
2Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, The Netherlands

Abstract # 753

1. BACKGROUND

Fetal antiretroviral exposure is usually derived from the cord-to-maternal (ctm) concentration ratio. This static parameter does not provide information on the pharmacokinetics in utero, limiting the assessment of a fetal exposure-effect relationship.

Pregnancy physiologically-based pharmacokinetic (p-PBPK) modeling could provide a solution. It can be used to simulate and predict fetal exposure during pregnancy. However, incorporating placental drug transfer in p-PBPK models remains a challenge to overcome.

Objective

We aimed to include placental transfer parameters derived from an ex vivo human cotyledon perfusion model into a p-PBPK model to quantitatively simulate fetal exposure to the antiretroviral agent darunavir, co-administered with ritonavir, at term.

2. METHODS

• Using Berkeley Madonna as a modeling platform, an existing p-PBPK model of darunavir/ritonavir was used to simulate maternal darunavir exposure.

• Subsequently, ex vivo human placental cotyledons were perfused with clinically relevant darunavir concentrations and placental transfer parameters were determined (Figure 1).

• Maternal-to-fetal (mtf) and fetal-to-maternal (ftm) clearance values were used to incorporate and parameterize a feto-placental unit in the maternal p-PBPK model (Figure 2).

• Fetal and maternal pharmacokinetic profiles were simulated and compared with observed clinical data.

• For illustration of model functionality, we simulated and explored several different DRV dosing regimens in terms of fetal exposure relative to the EC50 for resistant virus (0.55 mg/L).

3. RESULTS

Figure 2: Darunavir concentration-time and mass-balance profiles from the ex vivo placenta perfusion experiments. Ftm and mtf clearances were determined based on linear regression of natural log-transformed darunavir concentrations in the closed reservoir from 60 minutes onwards.

Table 1: In vitro and physiological parameters used to parameterize the feto-placental unit. Ftm and mtf cotyledon clearances were scaled to whole-organ placental clearance based on number of cotyledons and corrected for protein binding.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hct</td>
<td>50%</td>
<td>(Abduljalil, 2012)</td>
</tr>
<tr>
<td>FM perf</td>
<td>0.16</td>
<td>(Abduljalil, 2012)</td>
</tr>
<tr>
<td>AF perf</td>
<td>2.06</td>
<td>(Smith, 2002)</td>
</tr>
<tr>
<td>MCL of AF</td>
<td>4.20</td>
<td>(Smith, 2002)</td>
</tr>
<tr>
<td>Ncot</td>
<td>30</td>
<td>(Wang, 2016)</td>
</tr>
<tr>
<td>CL cot</td>
<td>3.16</td>
<td>Derivative</td>
</tr>
</tbody>
</table>

Figure 3: Schematic representation of the darunavir/ritonavir p-PBPK model including the scaled placental clearances and a feto-placental unit.

Figure 4: Predicted maternal and fetal darunavir concentration-time profiles following administration of two different dosing regimens, at term.

4. CONCLUSIONS

• We demonstrated that data obtained from ex vivo cotyledon perfusions can be integrated in a p-PBPK model to simulate fetal darunavir exposure (Figure 2b, Table 1).

• The simulated fetal darunavir plasma concentrations (at term) were in the range of observed cord blood concentrations (Figure 4).

• This advanced model provides a valuable tool in assessing the implications of new dosing regimens, optimizing the safety of maternal pharmacotherapy, and optimizing fetal antiretroviral treatment (Figure 3).

Acknowledgments

We thank all women who donated placentas and the midwives who collected them. We thank Gerard Zijderveld for inclusion of participants, Nielka van Erp Zijderveld for her help with the bioanalyses. This work was supported by Health~Holland, top sector Life Sciences & Health.